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Abstract

Folate is an essential micronutrient for normal development and metabolic function, and folate deficiency is 
associated with an increased risk of cancer, cardiovascular disease, mental dysfuntion and negative pregnancy 
outcomes. When estimating folate requirements, one must consider different bioavailability and functionality 
between synthetic folic acid and dietary folate, together with increased needs of folate in women of fertile 
age, pregnant and lactating women, preterm and small for gestational age weight infants and individuals who 
are homozygote for the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene polymorphism. In order 
to achieve an adequate metabolic status based on the metabolic marker total homocysteine, and not merely 
the absence of clinical signs of folate deficiency, the recommended intake of folate differs according to age, 
pregnancy and lactation. According to the World Health Organization, a decision limit for folate deficiency 
in adults is serum folate level below 10 nmol/L, and in women of fertile age a red blood cell folate level below 
906 nmol/L in order to prevent neural tube defects. Qualified systematic reviews along with identified relevant 
literature have been used for this scoping review prepared for the Nordic Nutrition Recommendations 2023.
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The aim of this scoping review is to describe the 
totality of evidence for the role of folate for 
health-related outcomes as a basis for setting and 

updating dietary reference values (DRVs) (Box 1). Folate 
is an essential micronutrient in the B vitamin complex. It 
is involved in different physiological processes and par-
ticularly essential for growth and foetal development 
because of its role in the synthesis, repair and methylation 
of DNA, contributing to the formation of new cells and 
tissues.

Folate is present in most foods, and high concentrations 
are found in liver, green vegetables and legumes. Folate 
species in food are labile to light and oxidation, and partly 

destroyed by cooking, compared to the chemically most 
stable folate form, synthetic folic acid, which is found in 
supplements (1).

Higher folate requirements are found in infants, chil-
dren, pregnant and lactating women, patients with intes-
tinal disease, severe skin diseases, haemolytic anaemia, 
patients taking antiepileptic medications and people with 
certain gene polymorphisms (2, 3).

The significance of folate status remains conflicting 
for many conditions, including cancer (4), cardiovascu-
lar disease (5), asthma (6, 7), mental function (8, 9) and 
pregnancy outcomes (10, 11). More than 30 years ago, the 
British Medical Research Council showed that maternal 

Popular scientific summary
•  Folate is a micronutrient in the B vitamin complex involved in the synthesis, repair and methylation 

of DNA.
• Folate is particularly essential for growth and foetal development.
• Foods rich in folate include liver, green vegetables and legumes.
• Folic acid, found in supplements, is the chemically most stable folate form.
•  Associations between folate status and chronic diseases, as well as mental function, and pregnancy 

outcomes, are conflicting.
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intake of folic acid starting before pregnancy prevents 
most cases of infant spina bifida and anencephaly, two 
major neural tube defects (NTDs) (12). Mandatory 
food fortification with folic acid is considered a safe and 
cost-effective intervention to prevent NTDs; however, for-
tification has not been implemented in many countries, 
including the Nordic countries (13).

Serum folate is the primary marker of folate status 
in children, adults and pregnant women. The metabolic 
marker, plasma total homocysteine (tHcy), increases 
with decreasing serum folate levels. Plasma tHcy are also 
affected by vitamin B12 and B6 status, age and renal func-
tion (3). In young children, serum folate concentrations 
are commonly high (>20 nmol/L) (14). In adults, the 
World Health Organization (WHO) recommends a serum 
folate concentration >10 nmol/L and a red blood cell 
(RBC) folate >906 nmol/L in women of fertile age (15).

In a recent study, median folate intake was 246 µg per 
day in a Swedish adult population (18–80 years, n = 1,797), 
25% had a serum folate concentrtion <10 nmol/L, and 
none of the women of reproductive age had erythrocyte 
folate concentrations associated with the lowest risk of 
NTDs (16). Women may reach a preventive RBC folate 
concentration of more than 906 nmol/L within 4 weeks 
of supplementation with daily intake of 800 µg folic acid 
(17), while a dietary folate intake of at least 350 µg per day 
has been considered necessary to prevent an increase in 
plasma homocysteine levels of the adult population (18).

Methods
This scoping review follows the protocol developed within 
the Nordic Nutrition Recommendations (NNR) 2023 proj-
ect (19). The sources of evidence used in the scoping review 
follow the eligibility criteria described previously (20).

The main literature search for this review was per-
formed in MEDLINE on 01 March 2021 with a search 
string: ((folate[MeSH Terms] AND review[Publication 
Type] AND (‘2011’[Date – Publication]: ‘3000’[Date – 
Publication]) AND Humans[Filter])) AND ((‘Diet’ OR 
‘Dietary’ OR ‘Food’ OR ‘Nutrition’ OR ‘Nutritional’)). 

The number of hits was 578. Only one qualified system-
atic review was identified for folate (21). We also identified 
relevant literature for this scoping review via ‘snowball-
ing’/citation chasing that was relevant for the background 
information.

Physiology
Dietary folates mostly occur as polyglutamyl derivatives 
and undergo hydrolysis in the gut to monoglutamates 
before intestinal absorption (22). Folates are transported 
across the jejunum by a carrier-mediated process, as folic 
acid, 5-methyltetrahydrofolate (5-MTHF) and 5-form-
yltetrahydrofolate (23, 24). Folates can also be absorbed 
by diffusion, a process that is linearly related to luminal 
folate concentrations and can account for 20–30% of 
folate absorption at high folate intakes (22).

Folates taken up by the intestinal mucosal cell are 
reduced to THF, which can either be transferred to the 
portal circulation without further metabolism or meth-
ylated before being transferred. THF is taken up by the 
liver, methylated to 5-MTHF and 10-formyl-THF, and 
transported to the peripheral tissues. Folate in the plasma 
is transported to the tissues as monoglutamate derivatives 
(2). Within the cell, THF is methylated to 5-methyl-THF, 
which is converted to folate polyglutamates containing up 
to seven glutamyl residues. Polyglutamation traps folate 
inside the cell at concentrations higher than extracellular 
fluids (25).

The chemically most stable folate form is synthetic 
folic acid. The bioavailability of  food folate is commonly 
estimated as 50% of  folic acid bioavailability when estab-
lishing food recommendations, but this should be con-
sidered a rough estimate, as data on the bioavailability of 
food folate vary between 30 and 98% (1, 26, 27). When 
adults receive daily folate doses <200 µg, little or none is 
lost in the urine, but at higher doses in the pharmacolog-
ical range, as used by pregnant women on antiepileptic 
medication (28), the urinary loss is considerable: 6% of 
a 1 mg dose, 10% of  2 mg, 50% of  5 mg and 80% of 
15 mg (29).

•  This paper is one of many scoping reviews commissioned as part of the Nordic Nutrition Recommendations 2023 
(NNR2023) project (19).

•  The papers are included in the extended NNR2023 report but, for transparency, these scoping reviews are also pub-
lished in Food & Nutrition Research.

•  The scoping reviews have been peer reviewed by independent experts in the research field according to the standard 
procedures of the journal.

•  The scoping reviews have also been subjected to public consultations (see report to be published by the NNR2023 
project).

•  The NNR2023 committee has served as the editorial board.
•  While these papers are a main fundament, the NNR2023 committee has the sole responsibility for setting dietary 

reference values in the NNR2023 project.

Box 1. The Nordic Nutrition Recommendations (NNR) 2023.
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Folate requirements and recommendations for folate 
intake are expressed as dietary folate equivalents (DFEs) 
that adjust for the greater degree of absorption of folic 
acid compared with folate naturally found in foods  
(1 μg of folate equals 0.6 μg folic acid added to food or 
taken with food or 0.5 μg folic acid [as a supplement] 
taken on an empty stomach) (30).

About half  of the total body folate pool (5–10 mg) is 
stored in the liver. Plasma folate consists almost entirely 
of 5-MTHF (90%) (1). A small fraction of plasma folate 
is bound to a folate-binding protein.

Folates act as coenzymes for enzymes that mediate sin-
gle-carbon metabolism. The fully reduced form (tetrahy-
dro-) serves as an acceptor or donor of a single-carbon 
unit in reactions involved in the synthesis of pyrimidines, 
purines, serine and methionine (2). Thymidine mono-
phosphate is produced by the methylation of uridine 
monophosphate. The coenzyme delivering the necessary 
methyl group in this reaction is 5,10-MTHF, which may 
be reduced to 5-MTHF for synthesis of methionine (Met) 
from homocysteine (Hcy) or oxidized to 10-formyltetra-
hydrofolate for use in purine synthesis (2).

In the Nordic population, 5–8% have a polymorphism 
in the gene coding for the 5,10-methylenetetrahydrofo-
late reductase (MTHFR) (C677T, Ala --> Val) (31). This 
mutation is associated with a decreased activity of the 
enzyme and results in hyperhomocysteinemia, primarily 
when folate levels are low. It is recommended that people 
with MTHFR polymorphism should have a serum folate 
>15 nmol/L (32).

Pregnancy
In women of  reproductive age, the WHO recommends 
a RBC folate threshold of  <400 ng/mL (906 nmol/L) to 
be used as an indicator of  folate insufficiency, as RBC 
folate concentrations above this limit will achieve the 
largest reduction of  NTDs (15). Pregnancy is associ-
ated with higher demands for folate due to foetal growth 
and drainage, as well as increased folate catabolism and 
excretion (33, 34). Serum folate levels decrease contin-
uously during pregnancy and folate stores are depleted 
after 3 months or sooner if  dietary supplements are not 
provided (35).

Lactation
During lactation, folate is preferentially taken up by actively 
secreting mammary glands. 5-Methyltetrahydrofolate is 
the predominant form of folate in human milk (36). While 
colostrum is relatively low in folate, milk folate increases 
during the lactation period (37). Despite reduced mater-
nal folate status, average milk folate levels are reported 
to be maintained at recommended dietary allowances for 
infants (38). In a 16 weeks intervention study, there were 
no differences in total milk folate or in unmetabolized 

folic acid concentration in the breast milk of women pro-
vided with either a low dose of folic acid, a [6S]-5-methyl-
THF supplement, or a placebo during lactation (39).

Infants
Maternal folate deficiency is associated with low folate lev-
els in the infants (14, 40). Significantly lower folate levels at 
birth have also been observed in low-birth-weight (<2,500 
g) (41) and premature infants (42). These infants also expe-
rience a fall in folate concentrations in early life (43).

In exclusively breastfed infants, plasma folate levels are 
reported to be elevated after the age of  2 months and are 
then two- to threefold higher than maternal levels (14, 44, 45).  
In formula-fed infants, more than 70% have plasma 
folate concentrations below the lowest concentration 
for breastfed infants (46). The opposite was observed in 
Korean infants, where the overall folate intakes in for-
mula-fed infants were significantly higher than those in 
human milk-fed infants, and this was associated with 
significantly higher folate and lower tHcy in formula-fed 
infants than human milk-fed infants at 5 months (47). 
As the quantity of  folic acid in formula milk may differ 
among countries, this will impact infant folate status.

Median serum folate was 27.0 (IQR= (25th, 75th percen-
tile) 20.4–36.3) nmol/L in Norwegian newborns (4 days) and 
median 31.6 (IQR= (25th, 75th percentile 21.3–43.3) nmol/L 
in infants from 6 weeks to 6 months. In this group of infants, 
exclusive breastfeeding decreased from 73% at 6  weeks to 
35% at 6 months (14).

Older children
Serum folate remains high up to age 12 months and then 
decreases to values observed in older children and adults 
during the first 1–3 years of life (14) (Fig. 1).

Fig. 1. Serum folate concentrations in children aged 4 days 
to 18 years.
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Malabsorption
Malabsorption occurs with intestinal diseases, such as 
celiac disease, Crohn’s disease, ulcerative colitis and trop-
ical sprue (3, 48). Folate can bind to food matrices, and 
many foods (e.g. oranges, lentils, cabbage) contain inhibi-
tors of the intestinal folate conjugase, which reduces folate 
absorption. Iron and vitamin C deficiencies are associated 
with impaired food folate utilization (49).

Assessment of nutrient status
Serum or plasma folate is the primary marker of folate 
status in children, adults and pregnant women. Intake of 
food before blood sampling may affect serum folate con-
centrations; however, most laboratories do not demand a 
fasting condition. The microbiological assay is considered 
the gold standard for both serum and RBC folate (50), 
but more often modern immunoassays are used in clini-
cal laboratories. Although RBC folate is considered to be 
a better indicator of body stores and nutritional status, 
there is considerable uncertainty about the reliability of 
the analytical methods for RBC folate, and many labo-
ratories do not any longer offer this analysis (51,52,53).

A higher intake of folate or folic acid is associated 
with a higher serum and RBC folate. After initiation of 
mandatory folic acid fortification in 1998, serum folate 
centrations more than doubled and RBC folate increased 
by approximately 50% in the US population (3). Initially, 
in folate deficiency, serum folate decreases, then plasma 
tHcy increases and a reduction in RBC folate becomes 
evident. Folate deficiency gives rise to megaloblastic 
changes in the bone marrow and other rapidly dividing 
tissues (54), hypersegmentation in neutrophils and gener-
ation of micronuclei in lymphocytes, biomarkers of chro-
mosome breakage or loss (55). Plasma tHcy may increase 
to 40–50 µmol/L in severe folate deficiency. In patients 
who are homozygous for the C677T polymorphism in the 
MTHFR gene, plasma tHcy may increase to 100 µmol/L. 
Plasma tHcy also increases with reduced renal function 
and age, so it is necessary to use age-specific decision lim-
its (56).

Many laboratories still use the 2.5th percentile refer-
ence limit to define folate deficiency, ranging from 5 to 
7 nmol/L in the Nordic countries. The reference interval 
is typically defined as the 95% interval between the two  
reference limits (2.5th and 97.5th percentiles) derived 
from the distribution of values from an apparently 
healthy reference population (57). However, a reference 
interval is merely a description of the folate status in a 
specific population and will differ according to the diet 
in the tested population. The mean folate concentration 
was 29.5 (95% confidence interval: 27.3–31.7) nmol/L in 
a population-based study including 750 individuals aged 
≥12 years in 2017 from Brazil, where folic acid fortifica-
tion of wheat and maize flours has been mandatory since 

2004 (58). In Norway, where folic acid fortification has 
not been implemented, the mean serum folate was 18.0 
(SD 13.8) nmol/L, 39% lower, in 158 Norwegian women 
of fertile age in 2015 (own unpublished data).

For clinical interpretation of serum folate, one must 
have clinical decision limits, which defines a value above 
or below a threshold associated with a significantly higher 
risk of adverse clinical outcomes or diagnostic for the 
presence of a specific disease (57). The decision limit 
may vary according to outcome. When WHO used meg-
aloblastic anaemia as a outcome for folate deficiency, the 
decision limit was <6.8 nmol/L (59). When WHO used 
tHcy as a functional marker for folate deficiency, the deci-
sion limit was <10 nmol/L (59). The WHO considered 
that folate status needs to be optimal in women of fertile 
age to prevent NTDs and suggested that blood cell folate 
concentrations below 906 nmol/L (serum folate 25–27 
nmol/L) should be a decision limit for deficiency in this 
age group (15). As Figure 2 shows, plasma tHcy starts 
to increase already when serum folate falls below ~25–27 
nmol/L, indicating suboptimal intracellular folate stores, 
and increases more sharply below ~10 nmol/L, indicating 
biochemical deficiency (60). A similar relation between 
serum folate and plasma tHcy is observed in pregnant 
women (61).

Dietary intake in Nordic and Baltic countries
Folate is present in most foods, and high amounts are 
found in liver, green vegetables and legumes. The folates 
in foods are almost exclusively in reduced form as poly-
glutamyl derivatives of tetrahydrofolate (FH4) (49), and 
reduced forms are labile to light and oxidation and partly 
destroyed by cooking. The bioavailability of food folate 
is commonly estimated to be 50% of folic acid bioavail-
ability when establishing food recommendations, but this 
should be considered a rough estimate, as data on the bio-
availability of food folate vary between 30 (27) and 98% 
(26), depending on the methodological approach used. 
Synthetic folic acid, which is a stable oxidized form of pte-
roylmonoglutamate, is considered to be more bioavailable 
than natural folate, with a bioavailability when taken with 
food of 85% and under fasting conditions close to 100% 
(25, 62).

The average dietary intake in adults in the Nordic 
countries is 257 µg per day for women and 293 µg per day 
for men (63). It is notable that average intake in Denmark 
is approxiately 38% higher in both men and women com-
pared to the other Nordic countries. Median folate intake 
was 246 μg per day for Swedish adults aged 18–80 years 
(16).

People with low folate intake, malabsorption or 
increased folate requirements have a risk of developing 
folate deficiency. Chronic alcoholism is associated with 
severe folate deficiency linked to poor dietary intake, 
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intestinal malabsorption, impaired hepatic uptake with 
reduced storage of folates and increased renal excretion 
(64). Children and pregnant and lactating women have an 
increased demand for folate, so have patients with hae-
molytic anaemia, malignancy, patients undergoing renal 
dialysis and patients using anticonvulsant drugs (phenyt-
oin, primidone), sulfasalazine (used in the treatment of 
inflammatory bowel disease), triamterene (a diuretic) or 
metformin (used in type 2 diabetes) (3).

Health outcomes relevant for Nordic and Baltic 
countries

Cancer
The potential impact of folate on cancer risk has been 
evaluated with conflicting findings, as various studies have 
demonstrated increased, risk, no effect and decreased 
risk. So the relation between folic acid and dietary folate 
intake, folate status and cancer still remains an unresolved 
issue (65). Evidence from animal and human studies sug-
gests that folic acid supplementation may prevent neo-
plastic initia tion, but may promote the progression of 
established pre cancerous lesions (4). 

Elevated tHcy levels and folate deficiency, as determined 
by serum folate level, were associated with increased over-
all risk of cancer in a meta-analysis of 83 case-control 
studies (66). Folate level was inversely associated with 
most cancer types except prostate, bladder, pancreatic and 
breast (66). Folic acid supplementation and higher serum 
levels are associated with increased risk of prostate can-
cer. Gene polymorphisms may impact cancer risk in cer-
tain ethnic groups (67).

The differences in bioavailability and metabolism of 
synthetic folic acid and natural dietary folate as well as 
variation in the baseline characteristics of subjects and dif-
ferent methods of folate status assessment in various stud-
ies have been suggested as reasons for the controversies 

regarding colorectal cancer prevention versus promo-
tion (65). Both randomized controlled trials (RCT) and 
cohort studies have, however, shown beneficial effects of 
both supplementary folic acid and dietary folate on the 
primary prevention of colorectal adenomas (68,69,70,71). 
A recent systematic review including a total of 24 cohort 
studies involving 37,280 patients and 6,165,894 individu-
als showed that high folate intake was associated with a 
reduced risk of colorectal cancer, particularly in people 
with middle or high alcohol consumption. However, the 
authors concluded that this still needs to be further con-
firmed (72). 

Cardiovascular disease
An adequate dietary folate intake (i.e. according to the 
recommendations) has been inversely associated with 
both severe and subclinical cardiovascular disease out-
comes (73). A systematic review of RCTs from 2016 
indicates a 10% lower risk of stroke and a 4% lower risk 
of overall cardiovascular disease with folic acid supple-
mentation. Folic acid supplementation had no significant 
effect on risk of coronary heart disease (5). A meta-anal-
ysis which included search for both folate and vitamin B12 
found that homocysteine lowering with B-vitamins among 
high vascular risk patients who are not taking antiplate-
let therapy was related to a significant reduction (29%) 
in overall stroke risk (74). In the China Stroke Primary 
Prevention Trial, daily supplementation with 0.8 mg folic 
acid reduced the incidence of a first stroke by 21%, with 
greater benefit in those with lower folate levels or higher 
homocysteine levels (75).

Mental health
In 2008, a Cochrane review concluded that there is 
no consistent evidence that folic acid, with or without 
vitamin B12, has a beneficial effect on cognitive func-
tion of  unselected healthy or cognitively impaired older 

Fig. 2. Change in plasma tHcy in relation to serum folate in adults >16 years with normal renal function and serum cobalamin 
>275 pmol/L (n = 12,988) by generalized additive models (GAMs). The values on the y-axis represent the difference from mean 
plasma tHcy. Published with permission of the Journal of the Norwegian Medical Association (60).
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people (9). However, in Swedish adolescents, higher 
folate intake and lower homocysteine level have been 
associated with improved achievement in school, and 
this effect was consistent after correcting for parental 
education and other confounders (76). A Norwegian 
study on 2,189 elderly community subjects followed 
for 6 years showed higher memory scores in those with 
higher serum folate (77). A recent meta-analysis found 
that low folate status was associated with an increased 
risk of  cognitive decline or dementia, whereas folate 
supplementation protected against the development of 
dementia (78). After controlling for vitamin B12, creat-
inine, demographic variables and depressive symptom 
score, a US study from 2005 concluded that RBC folate 
was directly associated with cognitive function scores 
and inversely associated with dementia in 1,789 people 
aged ≥60 years exposed to folic acid fortification (79). 
A Norwegian study including 2,203 people aged 72–74 
years, unexposed to mandatory folic acid fortification, 
showed that plasma folate was associated with cognitive 
performance. Among the elderly participants with vita-
min B12 concentrations in the lower range, the associa-
tion between plasma folate and cognitive performance 
was strongest (8).

Obesity
There is an increasing prevalence of obesity in most parts 
of the world (80), including the Nordic countries (81). 
Body mass index (BMI) has been inversely correlated with 
concentrations of folate in healthy children aged 2 months 
to 18 years (82), in women of fertile age (83), pregnant 
women (84) and non-pregnant adults (85).

Pregnancy outcomes
A Cochrane review reported consistent results showing 
that folic acid, alone or in combination with vitamins and 
minerals, prevents NTD, but does not have a clear effect 
on other birth defects (86) or pregnancy outcomes(10). 
The US Preventive Services Task Force (87) reviewed 
systematically results from RCTs on supplementation in 
pregnancy and NTDs confirming previous conclusions on 
protective effects. As demands for folate increase during 
pregnancy, the mother is at risk of developing folate 
deficiency throughout pregnancy. Folate deficiency has 
been associated with anaemia and peripheral neuropa-
thy in mothers (88). Recent reviews have found limited 
evidence for an association between folate status or folic 
acid supplementation in pregnancy and offspring neuro-
development (89, 90). However, continued folic acid sup-
plementation beyond early pregnancy, which is currently 
recommended to prevent NTD, however, is reported to 
benefit neurocognitive development of the child (91). Use 
of folic acid supplements during pregnancy was asso-
ciated with improved neurodevelopment in 4-year-old 

Spanish children when adjusting for sociodemographic 
and behavioural factors (92). The absence of folic acid 
supplementation in early pregnancy was associated with 
a higher risk of behavioural problems in the offspring at 
18 months of age (93). A detrimental effect of high dos-
ages of folic acid supplements (>5,000 vs. 400–1,000 μg/
day) during pregnancy on psychomotor development 
after the first year of life has also been reported (94). A 
more recent Norwegian study found a 23% increased risk 
of asthma in children aged 7 years whose mothers had a 
folate intake of >578 μg per day in pregnancy (7); how-
ever, the evidence for an association between folate intake 
or status in pregnancy and offspring risk of asthma and 
allergy appears inconclusive (95). There also appears to 
be inconclusive evidence for an association with protec-
tion against hypertensive disorders in pregnancy (96). 
There is evidence from India of an increased risk of insu-
lin resistance and of obesity in children of women with 
high serum folate and low serum B12 (97). The high serum 
folate in this population might, however, be secondary to 
vitamin B12 deficiency, which causes an increased amount 
of functionally inactive methylated folate in the blood.

Toxicity
The European Food Safety Authority’s (EFSA) upper 
 tolerable intake level of folic acid is set to 200 μg per day 
for children aged 1–3 years, 300 μg per day for children 
4–6 years, 400 μg per day for children 7–10 years, 600 μg 
per day for children 11–14 years, 800 μg per day for chil-
dren 15–17 years, 1,000 μg per day for adults >17 years 
and pregnant and lactating women (98).

Observations indicating adverse effects from excess 
folic acid intake, elevated serum folate and unmetabo-
lized folic acid concentrations remain inconclusive (99). 
Although harmful effects in elderly with low vitamin 
B12 status have been reported in several countries, as 
reviewed recently (100), the data do not yet provide the 
evidence needed to affect public health recommenda-
tions (99).

Adverse effects are exclusively reported from use of the 
synthetic compound folic acid and no adverse effects have 
been associated with the consumption of excess folate 
from foods (101). Only intake of folic acid in excess of 
5,000 µg per day may mask haematological manifesta-
tions of cobalamin deficiency, as well as antagonize anti-
convulsant therapy and affect zinc physiology (4).

Unmetabolized folic acid is detected in nearly all serum 
samples from US children, adolescents and adults (102). 
Concerns have been raised about the potentially untow-
ard effects of unmetabolized synthetic folic acid with 
regard to cancer, depression and cognitive impairment 
(103). In postmenopausal women unmetabolized folic 
acid, but not total folate, in plasma has been found to 
be related to a decrease in natural killer cell cytotoxicity 
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(104). The causative role for unmetabolized folic acid in 
this study has been questioned (3), and there are still gaps 
in understanding the factors that contribute to unmetab-
olized synthetic folic acid accumulation in plasma and the 
metabolic effects (99).

Requirement and recommended intakes
The EFSA concluded in 2014 for adults on an average 
requirement (AR) of 250 μg DFE per day and a popu-
lation reference intake (PRI) of 330 μg DFE per day. 
This was based on the folate intake required to maintain 
folate adequacy characterised by serum folate of ≥ 10  
nmol/L and RBC folate concentrations of 340 nmol/L. 
They assumed a coefficient of variation (CV) of 15% to 
account for the additional variability associated with 
the higher requirement for folate in individuals with the 
MTHFR 677TT genotype (105).

A dietary folate intake of  at least 350 µg per day 
has been considered necessary to prevent an increase 
in plasma homocysteine levels of  the adult popu-
lation (18). In a study on elderly men and women  
(66–94 years), a gradual decrease in plasma tHcy from 
~11.0 to ~8.5 µmol/L was evident with increasing folate 
intake ranging from 160 to ~850 µg per day (106). An 
intake of  ~300 µg folate per day was associated with a 
plasma tHcy of  ~10 µmol/L, indicating that a higher 
folate intake than recommended by NNR2012 (AR for 
adults: 200 µg/day and RI to 300 µg/day) may improve 
folate status.

Women of reproductive age
To promote optimal NTD risk reduction at the popula-
tion level, the WHO recommends that the RBC folate 
concentrations should be above a threshold of 906 nmo-
l/L (400 ng/mL) in women of reproductive age (15). It is 
considered that an RBC folate concentration below this 
level indicates folate insufficiency and suboptimal NTD 
prevention. An RBC level of 906 nmol/L corresponds to 
a plasma/serum folate concentration threshold of 25.5 
nmol/L (107). This level coincides with increased genomic 
stability and stable plasma tHcy concentrations (Figure 
2) (108).

As far from all pregnancies are planned, an RI of 400 
µg per day for all women of reproductive ages is consid-
ered necessary to provide adequate folate status of women 
experiencing unplanned pregnancies. It has been shown 
that women may reach a preventive RBC folate concen-
tration of more than 906 nmol/L within 4 weeks of sup-
plementation with daily intake of 800 µg folic acid (17). 
The prevalence of having a RBC folate <906 nmol/L was 
35% after 40 weeks with a daily folic acid supplement of 
140 µg and 18% with 400 µg (109). Median folate intake 
was 227 μg per day for Swedish women of reproductive 
age (16). Finnish studies report mean folate intakes in 

women of reproductive ages ranging from 215 to 230 μg 
per day (65, 66)

Pregnant women
In NNR2004, the recommended intake during pregnancy 
was set to 500 µg per day. This was based on previous 
studies indicating that 400–500 µg per day was consid-
ered sufficient to meet the increased requirement from 
fast-growing foetal tissues during pregnancy (67) and the 
recommendation was kept unchanged in NNR2012.

The EFSA Panel considers that it is not possible to set 
an AR for pregnancy and proposed an adequate intake 
(AI) for folate for pregnancy at 600 μg DFE per day based 
on a study on maintenance of serum and RBC folate con-
centrations in pregnancy (105). This study reported that 
a total of 450 µg per day of dietary folate in addition to 
synthetic folic acid was sufficient to maintain folate status 
in pregnant women. This level of intake was considered 
equivalent to ~600 µg per day dietary equivalents, assum-
ing 50 and 75% availability of dietary folate and synthetic 
folic acid consumed with meals, respectively (110).

In the Norwegian MoBa study, women who were reg-
ular folic acid supplement users had a total mean intake 
of folate of 615 (SD 270) µg per day of which mean 
275 (SD 95) µg per day came from diet  alone (111). In 
pregnancy week 18, women from the MoBa study, with 
a regular intake of folic acid supplement from 4 weeks 
before pregancy to week 17, had median serum folate 15.7 
(IQR 9.4–23.1) nmol/L compared to median 10.2 (IQR 
7.3–16.6) nmol/L in irregular users and median 5.7 (IQR 
4.3–7.7) nmol/L in non-users (112), showing that a regu-
lar intake of folic acid supplements is necessary to achieve 
an adequate folate status. However, even among regular 
supplement users, less than 25% had a serum folate in the 
range of 25.5 nmol/L, considered optimal for NTD pro-
tection. Based on this, recommendations on folate intake 
should be adjusted. Additionally, folate supplementation 
should if  necessary be combined with vitamin B12 supple-
mentation, in view of the commonly found low B12 status 
in pregnancy and the risk of harm to the child of high 
folate and low B12 (113). This recommendation applies 
especially to women who are vegans and not currently 
taking a B12 supplement (114).

Lactation
The NNR2012 recommended 500 µg per day to lactat-
ing women, and this amount was also considered to allow 
replenishment of stores before a possible new pregnancy. 
This was based on the following reasoning: the concentra-
tion of folate in human milk varies throughout the lacta-
tion period and is highest between 3 and 6 months (115). 
Smith and co-workers reported the average concentration 
of folate in human milk to be 85 µg/L (116). Based on 
a daily milk production of 0.75 L and a bioavailability 
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of 50%, the diet should contain approximately 100 µg of 
extra folate.

The EFSA added an additional intake of 130 μg DFE 
per day to the AR for non-lactating women considered to 
cover folate losses via breast milk, and a PRI of 500 μg 
DFE per day was derived for lactating women (105).

Infants and children
The calculated folate intake for infants from birth to 
6  months of  age was estimated by the EFSA to be 
64  μg per day, based on a mean folate concentration 
of  mature breast milk ~80 μg/L (range 45–99 μg/L) 
(105) and mean breast milk intake per day the first 
6 months ~0.8 L per day. In a study based on healthy, 
well-nourished lactating mothers and infants pub-
lished in 1980, the mean breast milk folate level was 
141.4 μg/L and total daily folate intake for breastfed 
infants was assessed at 14–25 μg/kg body weight (117). 
Approximately the same levels were reported in a more 
recent study from Korea (47). Mean breast milk folate 
contents ranged from 88.4 to 160.6 μg/L with an over-
all mean of  128.0  μg/L, and the contents peaked at 2 
months postpartum. Folate intake in the infants ranged 
between 100 and 140 μg per day during the first 12 
months. Serum folate in the infants at age 5 months was 
mean 72 (SD 39) nmol/L and at 12 months mean 76 (SD 
40) nmol/L with adequate plasma tHcy levels of  mean 
4.4 (SD 1.5) and 3.5 (0.8) μmol/L at 5 and 12 months, 
respectively (47). Mainly breastfed Norwegian infants 
have high serum folate levels the first 6 months of  life 
[median 31.6 (IQR 21.3–43.3) nmol/L], indicating that 
folate content in breast milk is adequate (14).

For infants aged 7–11 months, the EFSA recommended 
an AI of 80 μg DFE per day, by extrapolating upwards 
from the estimated folate intake in exclusively breastfed 
infants, considering the metabolically active body mass 
[median weight or infants at 3 months (6.1 kg) and at 9 
months (8.6 kg)] (105).

For older children, the EFSA extrapolated the ARs 
from the AR for adults using allometric scaling and 
growth factors and considering differences in reference 
weights. PRIs ranging from 120 μg DFE per day for age 
group 1–3 years to 330 μg DFE per day for age group 
15–17 years were derived (105).

In a study from Germany, only children who ate food 
enriched with folic acid had a folate intake correspond-
ing to recommended EFSA intake. For age group 6–12 
months, the folate intake was ~105 μg DFE per day and 
increased to 323 μg DFE per day in age group 15–18 years, 
compared to infants who did not eat folic acid-enriched 
food: ranging from ~63 μg DFE per day to 164 μg DFE 
per day from 6–12 months to 15–18 years (118).

During the first 2 months of  life, exclusively breast-
fed low-birth-weight (<2,500 g) and/or preterm infants 

(≤32 gestational weeks) could be at risk for folate defi-
ciency, especially when mothers are smokers and/or 
do not receive folic acid supplementation during preg-
nancy (119).

Integration
Recommended intake of folate for various age groups 
must depend on what is considered an adequate status 
according to levels of serum folate and the metabolic 
marker tHcy and not only on the absence of clinical signs 
of folate deficiency. Based on the recommended clinical 
decision levels indicating deficency, serum folate needs to 
be >10 nmol/L in adults and red cell folate >906 nmol/L 
in women of fertile age.

When estimating folate requirements, one must con-
sider different bioavailability and functionality between 
synthetic folic acid and dietary folate, along with 
increased needs of folate in women of fertile age, pregnant 
and lactating women, preterm and small for gestational 
age weight infants and individuals who are homozygote 
for the MTHFR gene polymorphism. Adequate levels of 
both folate and vitamin B12 are necessary for an optimal 
intracellular metabolism, and folate status needs to be 
reviewed together with serum vitamin B12.
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